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We study the global phase diagram of magnetic orders and lattice structure in the Fe-pnictide materials at
zero temperature within one unified theory tuned by both electron doping and pressure. On the low doping and
high-pressure side of the phase diagram, there is one single transition, which is described by a z=2 mean-field
theory with very weak run-away flows; on the high doping and low-pressure side, the transition is expected to
split to two transitions, with one O�3� spin-density wave transition followed by a z=3 quantum Ising transition
at larger doping. The fluctuation of the strain field of the lattice will not affect the spin-density wave transition
but will likely drive the Ising nematic order transition a mean-field transition through a linear coupling, as
observed experimentally in BaFe2−xCoxAs2.
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I. INTRODUCTION

The iron superconductor, for its potential to shed new
light on the non-BCS type of superconductors, has attracted
enormous interests since early this year. Despite the com-
plexities and controversies on the superconducting mecha-
nism, the minimal tight-binding model, or even the exact
pairing symmetry of the cooper pair, these samples do share
two common facts: the tetragonal-orthorhombic lattice dis-
tortion and the �� ,0� spin-density wave �SDW�.1 Both ef-
fects are suppressed under doping and pressure, and they
seem always to track each other in the phase diagram. In
Refs. 2 and 3, the lattice distortion is attributed to preformed
spatially anisotropic spin correlation between electrons,
without developing long-range SDW, i.e., the lattice distor-
tion and SDW both stem from magnetic interactions. More
specifically, the Ising order parameter �, which drives the
orthorhombic lattice distortion, is represented as �=�� 1 ·�� 2,
�� 1, and �� 2 are two Neel orders on the two different sublat-
tices of the square lattice.

Since this order deforms the electron Fermi surface,
equivalently, it can also be interpreted as electronic nematic
order. The intimate relation between the structure distortion
and SDW phase has gained many supports from recent ex-
periments. It is suggested by detailed x-ray, neutron, and
Mössbauer spectroscopy studies that both the lattice distor-
tion transition and the SDW transition of LaFeAs�O1−xFx�
are second order,4 where the two transitions occur separately.
However, in undoped AFe2As2 with A=Sr,Eu,Ba,Ca, the
structure distortion and SDW occur at the same temperature,
and the transition becomes a strong first-order transition.5–9

Also, recent neutron-scattering measurements on
Fe1+ySexTe1−x indicate that in this material the SDW wave
vector is �� /2,� /2� for both sublattices10 instead of �� ,0�,
as in 1111 and 122 materials, and the low-temperature lattice
structure is monoclinic instead of orthorhombic �choosing
one-Fe unit cell�. These results suggest that the SDW and
structure distortion are indeed strongly interacting with each
other and, probably, have the same origin. The sensitivity of
the location of the lattice distortion transition close to the
quantum critical point against the external magnetic field
�magnetoelastic effect� can further confirm this unified pic-
ture.

The clear difference between the phase diagrams of 1111
and 122 materials can be naturally understood in the unified
theory proposed in Refs. 2 and 3. We can write down a
general Ginzburg-Landau mean-field theory for �, �� 1, and
�2,

FGL = �����2 + r��2 + �
a=1

2

����� a�2 + r���� a�2 + ũ��� 1 · �� 2

+ ¯ . �1�

r� and r� are tuned by the temperature. For a purely two-
dimensional system, the Ising order, which induces the lat-
tice distortion, occurs at a temperature controlled by the in-
plane spin coupling TIsing�Jin,11 while there is no SDW
transition at finite temperature; for weakly coupled two-
dimensional layers, the Ising transition temperature is still
controlled by the in-plane coupling, while the SDW transi-
tion temperature is Tsdw�Jin / ln�Jin /Jz�, with Jz�Jin repre-
senting the interlayer coupling. This implies that on quasi-
two-dimensional lattices TIsing�Tsdw or �r=r�−r� is large
in the Ginzburg-Landau mean-field free energy in Eq. �1�. In
real systems, the 1111 materials are much more anisotropic
compared with the 122 materials since the electron band
structure calculated from local-density approximation �LDA�
shows a much weaker z direction dispersion compared with
the 122 samples;12 also the upper critical field Hc2 of 122
samples is much more isotropic.13 This justifies treating the
1111 materials as a quasi-two-dimensional system, while
treating the 122 materials as a three-dimensional �3D� one.
When Jz and Jin are close enough, �r is small and the inter-
action between the Ising order parameter and the SDW will
drive the transition first order by minimizing the free-energy
Eq. �1�. The phase diagram of free-energy Eq. �1� is shown
in Fig. 1.

Motivated by more and more evidences of quantum criti-
cal points in the Fe-pnictides superconductors,14–19 in this
work, we will explore the global phase diagram of magnetic
and nematic orders at zero temperature tuned by two param-
eters: pressure and doping. In Sec. II we will study the phase
diagram for quasi-two-dimensional lattices, with applications
for 1111 materials, and in Sec. III the gear will be switched
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to the more isotropic 3d lattices of 122 materials. Section IV
will briefly discuss the effect of the coupling between the
Ising transition and the strain tensor of the lattice, which will
drive the finite temperature Ising nematic transition a mean-
field transition, while the SDW transition remains unaffected,
as observed in BaFe2−xCoxAs2.17 The analyses in our current
work are all only based on the symmetry of the system and,
hence, independent of the details of the microscopic model.

II. QUASI-TWO-DIMENSIONAL LATTICE

In Ref. 2, the zero-temperature quantum phase transition
was studied for weakly coupled 2d layers with finite electron
doping. Since the hole pockets and the electron pockets have
small and almost equal size, the slight electron doping would
change the relative size of the electron and hole pockets sub-
stantially. Also, the neutron-scattering measurement suggests
that the SDW order wave vector is independent of doping in
1111 materials.14 Therefore, under doping the low-energy
particle-hole pair excitations at wave vector �� ,0� are lost
very rapidly, and the spin-density wave order parameter at
low frequency and long-wavelength limit can no longer de-
cay with particle-hole pairs �the fermi pockets are schemati-
cally showed in Fig. 2�. After integrating out electrons, we
would obtain the following z=1 Lagrangian:2

L = �
i=1

2

�
�=�,x,y

���� i · ���� i − r�� i
2 + u��� i�4 + L�,

L� = 	�� 1��x
2 − �y

2� · �� 2 + 	1��� 1�2��� 2�2 − 
��� 1 · �� 2�2, �2�

which contains no damping term. The first three terms of the
Lagrangian describe the two copies of 3D O�3� Neel orders
on the two sublattices. The 
 term is the only relevant term
at the 3D O�3� transition since it has positive scaling dimen-

sion ��
�=0.581.20 We expect this term to split the two co-
inciding O�3� transitions into two transitions: an O�3� transi-
tion and an Ising transition for Ising variable �=�� 1 ·�� 2, as
observed experimentally in 1111 materials.14

The two transitions after splitting are an O�3� transition
and an Ising transition. The O�3� transition belongs to the 3D
O�3� universality class, while the Ising transition is a z=3,
d=2 mean-field transition. This is because the Ising order
parameter does not double the unit cell and, hence, can decay
into particle-hole pairs at momentum �0,0�. The standard
Hertz-Millis theory21 would lead to a z=3 mean-field
transition.2,22

Now let us turn on another axis in the phase diagram: the
pressure. Under pressure, the relative size of hole and elec-
tron pockets are not expected to change. Therefore, under
translation of Q� = �� ,0� in the momentum space, the hole
pocket will intersect with the electron pocket �Fig. 2�b��,
which leads to overdamping of the order parameters. The
decay rate can be calculated using Fermi’s Golden rule,

Im����,q�� � � d2k

�2��2 �f�k+q� − f�k+Q� ����� − k+q + k+Q� �

��	k + Q��� i,q�k + q
�2 � c0
�

�v�h � v�e�
. �3�

vh and ve are the Fermi velocity at the points on the hole and
electron pockets, which are connected by wave vector �� ,0�.
The standard Hertz-Millis21 formalism leads to a coupled z
=2 theory in the Euclidean momentum space with Lagrang-
ian,

0

r

1st order
Ising

SDW

∆r∆rc

FIG. 1. �Color online� The schematic phase diagram of
Ginzburg-Landau mean-field theory in Eq. �1� plotted against r
=r�+r� and �r=r�−r�. r is linear with temperature T, while �r is
tuned by anisotropy ratio Jz /Jin. When �r is small, the interaction
between �� 1 and �� 2 induces a strong first-order transition, which
corresponds to the undoped 122 materials with more isotropic elec-
tron kinetics; when �r is large, the transition is split into two tran-
sitions, with an Ising transition followed by an SDW transition at
lower temperature, and this is the case in the 1111 materials with
quasi-two-dimensional dispersions. The multicritical point �rc is
determined by ũ.

a

b c d

FIG. 2. �Color online� �a� The schematic two-dimensional Fermi
pockets of 1111 materials, the concentric circles are two very close
hole pockets, the ovals are electron pockets. �b� and �d� The relative
position of hole and electron pockets after translating by �� ,0� and
�0,�� in the momentum space, in the low doping, critical doping,
and high doping regimes.
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Lq = �
i=1

2

�� i · ���� + q2 + r��� i + 	�� 1�qx
2 − qy

2� · �� 2 + L�,

L� = Ã���� 1�4 + ��� 2�4� − 
��� 1 · �� 2�2 + C̃��� 1�2��� 2�2. �4�

The parameter r can be tuned by the pressure. The Ising
symmetry of �=�� 1 ·�� 2 on this system corresponds to trans-
formation

x → y, y → x ,

�� 1 → �� 1, �� 2 → − �� 2, � → − � . �5�

This Ising symmetry forbids the existence of term �� 1 ·�� 2 in
the Lagrangian, while the mixing term 	�� 1�qx

2−qy
2� ·�� 2 is

allowed.
We can diagonalize the quadratic part of this Lagrangian

by defining �� A= ��� 1+�� 2� /�2 and �� B= ��� 1−�� 2� /�2,

Lq = �� A · ���� + 1 −
	

2
�qx

2 + 1 +
	

2
�qy

2 + r��� A + �� B · ����

+ 1 +
	

2
�qx

2 + 1 −
	

2
�qy

2 + r��� B + L�,

L� = A���� A�4 + ��� B�4� + B��� A · �� B�2 + C��� A�2��� B�2. �6�

After the redefinition, the Ising transformation becomes

x → y, y → x ,

�� A → �� B, �� B → − �� A, � → − � . �7�

Naively, all three quartic terms A, B, and C are marginal
perturbations on the z=2 mean-field theory, a coupled
renormalization-group �RG� equation is required to deter-
mine the ultimate fate of these terms. Notice that the aniso-
tropy of the dispersion of �� A and �� B cannot be eliminated by
redefining space and time; therefore, the number 	 will enter
the RG equation as a coefficient. The final coupled RG equa-
tion at the quadratic order for A, B, and C reads as

dA

d ln l
= − 22A2 −

1

2
B2 −

3

2
C2 − BC ,

dB

d ln l
= − 5uB2 − 8AB − 8uBC ,

dC

d ln l
= − uB2 − 4AB − 20AC − 4uC2. �8�

u is a smooth function of 	, which decreases smoothly from
u=1 in the isotropic limit with 	=0 to u=0 in the anisotropic
limit with 	=2 �Fig. 3�. With small 	, the function u can be
expanded as u=1−	2 /12−	4 /120+O�	6�. The self-energy
correction of �� a from the quartic terms will lead to the flow
of the anisotropy ratio 	 under RG, but the correction of this
flow to the RG equation �8� is at even higher order.

The typical solution of the RG equation �8� is plotted in
Fig. 4, for the most natural choice of the initial values of

parameters with Ã�
, Ã� C̃ in Eq. �4�, i.e., the coupling
between �� 1 and �� 2 is weak. One can see that the three pa-
rameters A, B, and C all have run-away flows and eventually
become nonperturbative and likely drive the transition
weakly first order. However, the three coefficients will first
decrease and then increase under RG flow. This behavior
implies that this run-away flow is extremely weak or, more
precisely, even weaker than marginally relevant perturba-
tions because marginally relevant operators will still mono-
tonically increase under RG flow, although increases slowly.
Therefore, in order to see this run-away flow, the correlation
length has to be extremely long, i.e., the system has to be
very close to the transition, so the transition remains one
single second-order mean-field transition for a very large
length and energy range. At the finite temperature quantum
critical regime, the standard scaling arguments lead to the
following scaling laws of physical quantities such as specific
heat and the spin-lattice relaxation rate of NMR contributed
by the quantum critical modes,23

Cv � T ln 1

T
�,

1

T1
� const. �9�

These scaling behaviors are obtained from ignoring the quar-
tic perturbations. The quartic terms are marginal for a rather
large energy scale �Fig. 4�; therefore, to precisely calculate
the physical quantities one should perform a perturbation

0.5 1.0 1.5 2.0
Γ

0.4

0.6

0.8

1.0

u

FIG. 3. �Color online� The plot of u in Eq. �8� against aniso-
tropic dispersion coefficient 	 between the isotropic limit 	=0 to
anisotropic dispersion with 	=1.95.

5 10 15 20
Ln�l�

�0.10

�0.05

0.05

0.10

FIG. 4. �Color online� The solution of the RG equation �8�. All
three quartic perturbations decrease first then increase and finally
become nonperturbative. The run-away flow is weaker than margin-
ally relevant perturbations.
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theory with constants A, B, and C, which may lead to further
logarithmic corrections to the scaling laws.

The ẑ direction tunneling of �� A and �� B between layers has
so far been ignored, which is also a relevant perturbation at
the z=2 mean-field fixed point. The ẑ direction tunneling is
written as Jz�� a,z ·�� a,z+1, which has scaling dimension 2 at the
z=2, d=2 mean-field fixed point, and it becomes nonpertur-
bative when

Jin

Jz
�  �

a
�2

� r−1. �10�

This equation implies that if the tuning parameter r is in the
small window r�Jz /Jin, the transition crossover back to a
z=2, d=3 transition, where all the quartic perturbations A, B,
and C are irrelevant. Since at the two-dimensional theory
these quartic terms are only very weakly relevant, in the end
the interlayer coupling Jz may win the race of the RG flow,
and this transition becomes one stable mean-field second-
order transition.

Now we have a global two-dimensional phase diagram,
whose two axes are doping and pressure. The two second-
order transition lines in the large doping and low-pressure
side will merge to one single mean-field transition line in the
low doping and high-pressure side of the phase diagram.
Then inevitably there is a multicritical point where three
lines merge together. At this multicritical point, the hole
pockets will just touch the electron pocket after translating
by wave vector �� ,0� �Fig. 2�c��. Now the SDW order pa-
rameter �� A and �� B can still decay into particle-hole pairs, the
Fermi’s Golden rule and the lattice symmetry lead to the
following overdamping term in the Lagrangian:

Lq =  ���
��qx�

+ g
���

��qy�
���� A�2 + g

���
��qx�

+
���

��qy�
���� B�2 + ¯ .

�11�

g is a constant, which is in general not unity because the
system only enjoys the symmetry �7�. The naive power
counting shows that this field theory has dynamical exponent
z=5 /2, which makes all the quartic terms irrelevant. How-
ever, since the hole pockets and electron pockets are tangen-
tial after translating �� ,0�, the expansion of the mean-field
free energy in terms of the order parameters �� A and �� B con-
tains a singular term Ls���� A�5/2+ ��� B�5/2, which becomes
very relevant at this naive z=5 /2 fixed point. Similar singu-
lar term was found in the context of electronic nematic-
smectic transition.24 The existence of this singular term im-
plies that, it is inadequate to start with a pure Bose theory by
integrating out fermions, one should start with the Bose-
Fermi mixed theory, with which perform the RG calculation.
We will leave this sophisticated RG calculation to the future
work; right now we assume this multicritical point is a spe-
cial strongly interacting fixed point. The schematic three-
dimensional global phase diagram is shown in Fig. 5.

In real system, due to the more complicated shape of the
electron and hole pockets, with increasing doping the pock-
ets will experience cutting and touching several times after
translating by �� ,0� in the momentum space. We have used

a five-band model developed in Ref. 25 with all the d orbitals
on the Fe atoms and calculated the mean-field phase diagram
close to the critical doping. The order parameter �� a couples
to the electrons at the Fermi surface as �k�� a ·ck

†�� ck+Q� +H.c.
The mean-field energy of electrons due to nonzero spin order
parameter �� a will renormalize r in field theory �6� and,
hence, the critical rc depends on the shape of the Fermi sur-
face, which is tuned by doping. The critical rc is expected to
be proportional to the critical pressure pc in the global phase
diagram. rc as a function of doping is plotted in Fig. 6, and
the shapes of the Fermi pockets at the critical doping x
=7.6% are plotted in Fig. 7.

The z=2 quantum critical behavior discussed in this sec-
tion is only applicable to small enough energy scale. First of
all, the damping term ��� always competes with a quadratic
term �2 in the Lagrangian, and at small enough energy scale
the linear term dominates. If we assume the coupling be-
tween the spin order parameter �� a and the electrons is of the
same order as the effective spin interaction J, the damping
rate is linear with �J2� /Ef

2, while the quadratic term is
��2 /J. Therefore, the frequency should be smaller than
J3 /Ef

2 in order to apply the z=2 field theory �6�. The value of
J has been calculated by LDA �Ref. 26� and also measured
with inelastic neutron scattering,27 and both approaches indi-
cate that J�50 meV. Ef is the Fermi energy of the Fermi
pockets, which is on the order of 200 meV. Therefore, the
frequency-linear damping term will dominate the frequency
quadratic term in the Lagrangian as long as ��3 meV.

The damping rate of order parameters �� a is calculated
assuming the Fermi surface can be linearly expanded close to
the intersection point after translation in the momentum
space; the criterion to apply this assumption depends on the
details on the Fermi surface. In the particular situation under

p

x

T

Disorder

Nematic

Nematic+
SDW

FIG. 5. �Color online� The global phase diagram of quasi-two-
dimensional materials, with applications for 1111 materials. The
finite temperature transition is always split to an Ising nematic tran-
sition and a SDW transition. The zero-temperature transitions de-
pend on the doping and pressure. In the high doping and low-
pressure side, the transition is split to two, as observed in
experiments; in the low doping and high-pressure side, there is one
single transition very close to the mean-field solution. A multicriti-
cal point, where the three transition lines merge is identified, which
is expected to be a strongly coupled fixed point.
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discussion, this crossover energy scale is ��30 meV in the
undoped material, which is larger than the upper limit of 3
meV we obtained previously. Therefore, the ultraviolet cutoff
of field theory �6� is estimated to be 3 meV.

III. THREE-DIMENSIONAL LATTICES

As mentioned in the introduction, compared with the 1111
materials, the 122 materials are much more isotropic, so we
will treat this family of materials as a three-dimensional
problem. If after translation by �� ,0� the hole pockets inter-
sect with the electron pockets, the zero-temperature quantum
transition is described a z=2, d=3 transition with analogous
Lagrangian as Eq. �4�, which becomes a stable mean-field
transition. The finite temperature transition is described by
two copies of coupled 3D O�3� transition. If the finite tem-
perature transition is split into two transitions close to the
quantum critical point, as observed in BaFe2−xCoxAs2,17 one
can estimate the size of the splitting close to the quantum
critical point. These two transitions, as explained before, are
driven by the only relevant perturbation 
��� 1 ·�� 2�2 at the
coupled 3D O�3� transition because the Ising order parameter
is obtained by minimizing this term through Hubbard-
Stratonovich transformation. The scaling dimension of 
 at
the 3D O�3� transition is ��
�=0.581, while 
 at the z=2,
d=3 mean-field fixed point has dimension −1. Therefore,
close to the quantum critical regime, to estimate the effect of

 one should use the renormalized value 
R�
�−1�
r1/2.
The size of the splitting of the finite temperature transition
close to the quantum critical point can be estimated as

�Tc

Tc
� 
R

1/����
�� � 
1/����
��r1/�2���
��. �12�

� is the exponent defined as �� t−� at the 3D O�3� universal-
ity class. Tc still scales with r in terms of a universal law

Tc�rz/�d−2+z�. The number 
 can be estimated in a J1-J2
Heisenberg model on the square lattice as introduced in Ref.
28; the value is given by 
�J1

2 /J2
2. However, J1-J2 model is

not designed for describing a metallic phase, so the legiti-
macy of applying the J1-J2 model to Fe pnictides is still
under debate. In the finite temperature quantum critical re-
gime, the specific heat, NMR relaxation rate 1 /T1 scale as

Cv � T3/2,
1

T1
� T1/2. �13�

The similar analysis also applies when the finite tempera-
ture transition is one single first-order transition, which is the
more common situation in 122 materials. One can estimate
the jump of the lattice constant and the jump of the SDW
order parameter at the finite temperature first-order transition
close to the quantum critical point as

��� sdw � 
�/����
��r�/�2���
��,

�a � 
2�/����
��r�/����
��. �14�

a is the lattice constant, which is linear with the Ising order
parameter �� 1 ·�� 2. � is the critical exponent at the 3D O�3�
transition defined as 	�� sdw
� t�. However, it is difficult to
determine whether there should be one first-order or two
separate second-order transitions based on the relevance of
parameter 
, using universal formalism. An argument based
on the dimensionality was given in the first section of this
paper.

If under doping the hole pockets and electron pockets do
not intersect �which depends on the details of ẑ direction
dispersions�, this transition becomes two copies of coupled
z=1, d=3 transition with three quartic terms A, B, and C,

− 1 . 5 − 1 . 0 − 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5

k x

− 1 . 5

− 1 . 0

− 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

k
y

FIG. 7. �Color online� The plot of the hole and electron pockets
after translating the hole pockets by the SDW wave vector, at the
critical doping x=7.6%. The green circle is electron pocket located
around �0,�� and the blue one is electron pocket located around
�� ,0�.

0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 1 0
d o p i n g

0 . 9 0

0 . 9 5

1 . 0 0

1 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

1 . 2 5

r
c

FIG. 6. Numerical results of rc of �� a due to coupling to elec-
trons. x axis is the electron doping. The peak of this curve corre-
sponds to the critical doping xc=7.6%, where electron and hole
pockets touch each other after translating the hole pockets by the
SDW wave vector. The two pockets intersect �separate� if doping is
smaller �larger� than this critical doping. If x�xc, the transition is
split into two transitions by quantum fluctuations; if x�xc, the tran-
sition is a z=2, d=2 transition with a very weak run-away flow in
2d.
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Lq = �� A · ��2 + 1 −
	

2
�qx

2 + 1 +
	

2
�qy

2 + qz
2 + r��� A

+ �� B · ��2 + 1 +
	

2
�qx

2 + 1 −
	

2
�qy

2 + qz
2 + r��� B + L�,

L� = A���� A�4 + ��� B�4� + B��� A · �� B�2 + C��� A�2��� B�2. �15�

The coupled RG equation of the quartic terms is exactly the
same as the one in Eq. �8�; therefore, this free energy is also
subjected to an extremely weak run-away flow, which is neg-
ligible unless the length scale is large enough. Again, one can
estimate the universal scaling behavior in the quantum criti-
cal regime contributed by the quantum critical modes,

Cv � T3,
1

T1
� T . �16�

IV. COUPLING TO A SOFT LATTICE

Recent specific-heat measurement on BaFe2−xCoxAs2 re-
veals two close but separate transitions at finite temperature,
with a sharp peak at the SDW transition, and a discontinuity
at the lattice distortion transition.17 A discontinuity of spe-
cific heat is a signature of mean-field transition, in contrast to
the sharp peak of Wilson-Fisher fixed point in a three-
dimensional space. The specific-heat data suggest that the
nature of the Ising nematic transition is strongly modified
from the Wilson-Fisher fixed point, while SDW transition is
unaffected. In the following, we will attribute this difference
to the lattice strain field fluctuations.

The SDW transition at finite temperature should belong to
the 3D O�3� transition if the lattice is ignored. The O�3�
order parameter �� couples to the lattice strain field with a
quadratic term,29

��� �2��xux + �yuy + ���zuz� , �17�

which after integrating out the displacement vector generates
a singular long-range interaction between ��� �2 in the real
space,

� d3rd3r�g��� �r
2 f�r� − r���

�r − r��3
��� �r�

2 . �18�

f is a dimensionless function, which depends on the direction
of r�−r��. The scaling dimension of g is ��g�=
=2 /�−3, and
� is the standard exponent at the 3D O�3� transition, which is
greater than 2/3 according to various types of numerical
computations.20 Therefore, this long-range interaction is ir-
relevant at the 3D O�3� transition and, by coupling to the
strain field of the lattice, the SDW transition is unaffected.
However, if the SDW has an Ising uniaxial anisotropy, the
SDW transition becomes a 3D Ising transition with ��2 /3,
and the strain field would lead to a relevant long-range inter-
action.

However, since the symmetry of the Ising order parameter
� is the same as the shear strain of the lattice, the strain
tensor will couple to the coarse-grained Ising field � as

F�,u� = �̃���xuy + �yux� + ¯ . �19�

u� is the displacement vector. The ellipses are all the elastic
modulus terms. Notice that we have rotated the coordinates
by 45° since the true unit cell of the system is a two iron unit
cell. After integrating out the displacement vector u� , the ef-
fective free energy of � gains a new singular term at small
momentum,

F�,� � f��,����k�2. �20�

f is a function of spherical coordinates � and � defined as
�kx ,ky ,kz�=k�cos���cos��� , cos���sin��� , sin����, but f is in-
dependent of the magnitude of momentum k�. By tuning the
uniform susceptibility r, at some spherical angle of the space
the minima of f start to condense, we will call these minima
as nodal points. These nodal points are isolated from each
other on the two-dimensional unit sphere labeled by the solid
angles � ,� and are distributed symmetrically on the unit
sphere �� ,�� according to the lattice symmetry transforma-
tion. Now suppose one nodal point of f is located at ��0 ,�0�,
we rotate the ẑ direction along ��0 ,�0� and expand f at this

nodal point in terms of �̃=�−�0, the whole free energy can
be written as

F =� q2dq�̃d�̃�q2 + ��̃2 + r���q,�̃�2 + O��4� . �21�

Notice that if f��0 ,�0� is a nodal point then f��−�0 ,�
+�0� has to be another nodal point. The naive power count-
ing shows that effectively the spatial dimension of this field
theory �21� is D=5, and the scaling dimension of �q,� is
−7 /2. The quartic term �4 takes an unusual form in the new

momentum space of q , �̃, but the straightforward power
counting indicates that it is still an irrelevant operator. There-
fore, the strain tensor fluctuation effectively increases the
dimension by two, which drives the transition a mean-field
transition.

There is another way to formulate this effective five-
dimensional theory. Let us rotate the ẑ direction of the mo-
mentum space along the nodal point ��0 ,�0�, then the scaling

dimension of kz is 1, and kx ,ky �k�̃ effectively have scaling
dimension 2. Therefore, expanded at the minimum the qua-
dratic part of the free energy of � reads as

F =� dkxdkydkz kx
2 + ky

2

kz
2 + kz

2 + r���k�2 + ¯ . �22�

The total dimension is still 5, considering ��kx�=��ky�
=2��kz�=2. All the other momentum-dependent terms in the
free energy are irrelevant.

The symmetry of the lattice allows multiple degenerate
nodal points of function f�� ,�� on the unit sphere labeled by
solid angles. If the only nodal points are north and south
poles �=0,�, which is allowed by the tetragonal symmetry
of the lattice, the theory becomes a precise five-dimensional
theory. However, the symmetry of the system also allows
four stable degenerate nodal points on the equator, for in-
stance, at �� /2,n� /2� with n=0�3. Close to nodal points
n=0,2, ��kz�=��ky�=2��kx�=2, while close to nodal points
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n=1,3, ��kz�=��kx�=2��ky�=2. Therefore, the scattering
between these nodal points complicates the naive counting of
the scaling dimensions, although ��kz�=2 is still valid. The
transition in this case may still be a stable mean-field transi-
tion, but a more careful analysis of the loop diagrams is
demanded to be certain. Let us denote the � mode at
�� /2,0� and �� /2,�� as �1 and �1

� and denote �� /2,� /2�
and �� /2,−� /2� modes as �2 and �2

�, the expanded free
energy reads as

F =� dkxdkydkz kz
2 + ky

2

kx
2 + kx

2 + r���1,k�2 +  kz
2 + kx

2

ky
2 + ky

2 + r�
���2,k�2 + �

a=1

2

��
i=1

4

k�i�g�a,k1
�a,k2

�a,k3
�a,k4

+ ��
i=1

4

k�i�g1�1,k1
�1,k2

�2,k3
�2,k4

+ ��
i=1

4

k�i�g2�1,k1
�2,k2

�2,k3
�2,k4

+ ��
i=1

4

k�i�g2�1,k1
�1,k2

�1,k3
�2,k4

. �23�

The g1 and g2 terms describe the scattering between different
nodal points. To see whether the mean-field transition is
stable, one can calculate the one-loop corrections to g1 and
g2. The result is that none of the loops introduces nonpertur-
bative divergence in the infrared limit, i.e., the quartic terms
remain perturbative at the mean-field fixed point. This analy-
sis suggests that the Ising nematic transition is a mean-field
transition even with multiple nodal points of function f�� ,��
on the equator.

V. SUMMARIES AND EXTENSIONS

In this work, we studied the global phase diagram of the
magnetic order and lattice distortion of the Fe-pnictides su-
perconductors. Two-dimensional and three-dimensional for-
malisms were used for 1111 and 122 materials, respectively.
The superconductivity was ignored so far in this material. If
the quantum critical points discussed in this paper occur in-
side the superconducting phase, our results can be applied to
the case when superconducting phase is suppressed. For in-
stance, in 1111 materials, if a transverse magnetic field
higher than Hc2,ab is turned on, the field theories �2� and �6�
become applicable. If the Tc of the superconductor is lower
than the ultraviolet cutoff of our field theory, the scaling
behavior predicted in our work can be applied to the tem-
perature between Tc and the cutoff. Inside the superconduct-
ing phase, the nature of the transition may be changed. In

122 materials, the angle resolved photoemission spectros-
copy measurements on single crystals indicate that the Fermi
pockets are fully gapped in the superconducting phase;30

therefore, the magnetic and nematic transitions are described
by the z=1, d=3 field theory �15�, which is an extremely
weak first-order transition. In 1111 materials, although many
experimental facts support a fully gapped Fermi surface,
d-wave pairing with nodal points is still favored by the An-
dreev reflection measurements.31,32 The nematic transition in
the background of d-wave superconductor is studied in Refs.
33–35.

In most recently discovered 11 materials Fe1+ySexTe1−x,
the SDW and lattice distortion are both different from the
1111 and 122 materials.10 The SDW state breaks the reflec-
tion symmetries about both x=y line and x̂ axis, i.e., there are
two different Ising symmetries broken in the SDW state, the
ground-state manifold is S2�Z2�Z2. In this case, the clas-
sical and quantum phase diagrams are more interesting and
richer and, since the order moments of the SDW in 11 ma-
terials are much larger than 1111 and 122 materials �about
2�B�, a lattice Heisenberg model with nearest-neighbor,
second-nearest-neighbor, and third-nearest-neighbor interac-
tions �J1-J2-J3� may be adequate in describing 11 materials,
as was studied in Ref. 36.

Besides the quantum phase transitions studied in our cur-
rent work, a quantum critical point is conjectured between
the P-based and As-based materials,37 the field theory of this
quantum critical point is analogous to Eq. �4�. The formalism
used in our work is also applicable to phase transitions in
other strongly correlated materials, for instance, the spin-
dimer material BaCuSi2O6, which under strong magnetic
field develops long-range XY order interpreted as condensa-
tion of spin triplet component Sz=−1.38 This quantum critical
point also has dynamical exponent z=2, although the
frequency-linear term is from the Larmor precession induced
by the magnetic field, instead of damping with particle-hole
excitations. The frustration between the nearest-neighbor
layers in this material introduces an extra Ising symmetry
between the even and odd layers besides the XY spin sym-
metry; therefore, the quartic terms of this field theory are
identical with Eq. �6�. The RG equations of these quartic
terms are much simpler than Eq. �8� because only the “lad-
derlike” Feynman diagrams need to be taken into account.39

We will study the material BaCuSi2O6 in detail in a future
work.40
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